

Published on Web 06/03/2009

A Two-Step, Formal [4 + 2] Approach toward Piperidin-4-ones via Au Catalysis

Li Cui, Yu Peng, and Liming Zhang*,[†]

Department of Chemistry/216, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557

Received May 1, 2009; E-mail: lzhang@unr.edu

The piperidine ring is an essential building block in many bioactive alkaloids, and modular constructions of functionalized piperidines such as piperidin-4-ones can serve as powerful tools in alkaloid synthesis.

In our ongoing program of expanding gold catalysis¹ into Nheterocycle synthesis, we have developed an efficient, two-step synthesis of piperidin-4-ones in a formal [4 + 2] manner from secondary amines. Herein, we disclose the details of this chemistry, including its regioselectivity and diastereoselectivity as well as its application in a highly diastereoselective synthesis of (\pm) -cermizine C.²

We have previously reported that in situ-generated tertiary aniline N-oxides can oxidize tethered terminal C-C triple bonds in the presence of Ph₃PAuNTf₂, generating α -oxo gold carbene intermediates and subsequently affording tetrahydrobenzazepinones.^{3,4} We anticipated that tertiary aliphatic amine N-oxide A, readily generated from tertiary amine 1 substituted with a 3-butynyl group, might undergo similar gold-catalyzed intramolecular alkyne oxidation, leading to α -oxo gold carbene **B** (Scheme 1); furthermore, we reasoned that the amine α -hydrogens in **B** could migrate to the gold carbene in the form of hydride,⁵ leading to intermediate C containing both an electrophilic iminium and a nucleophilic gold enolate. Notably, intramolecular hydride migrations from arylacetals to gold carbenes have been proposed in a novel study by Bhunia and Liu.⁶ Cyclization of C would afford piperidin-4-one 2. As tertiary amine 1 can be prepared readily from a secondary amine and 3-butynyl halide/tosylate, the overall transformation would constitute a facile two-step, formal [4 + 2]synthesis of synthetically versatile piperidin-4-ones.

 $\ensuremath{\textit{Scheme 1.}}$ Design of a Two-Step, Formal [4+2] Approach to the Synthesis of Piperidin-4-ones

We started with *N*-(3-butynyl)piperidine (**3**). One-pot sequential *m*-CPBA oxidation and gold-catalysis with Ph₃PAuNTf₂ at 0 °C indeed led to an excellent yield of bicyclic piperidin-4-one **4** (Table 1, entry 1). Running the reaction at -20 °C (entry 2) did not improve the yield, and screening of other gold(I) and other metal catalysts as well as HNTf₂ (1 equiv) did not lead to improved results (entries 3–9). Notably, removal of H₂O from commercial *m*-CPBA using 4 Å molecular sieve (MS) resulted in an improved yield (entry 10), and Et₃PAuNTf₂ worked equally well (entry 11).

We then probed the scope of this reaction using the optimized conditions with the goal of clearly defining its regioselectivity and stereoselectivity. To improve the overall efficiency of this two-step

Table 1. Reaction Optimization

	m-CPBA (1.0 equiv) CH ₂ Cl ₂ , 0 °C, 1 h then, catalyst temperature, time	4 N-		9 ⁻ 5
entry ^a	catalyst (5 mol %)	<i>T</i> (°C)	time (h)	yield (%) ^b
1	Ph ₃ PAuNTf ₂	0	1	87
2	Ph ₃ PAuNTf ₂	-20	8	80
3	dichloro(2-picolinato)gold(III)	0	1	52
4	(2-biphenyl)Cy ₂ PAuNTf ₂	0	1	65
5	(4-CF ₃ Ph) ₃ PAuNTf ₂	0	1	54
6	Ph ₃ PAuCl/AgSbF ₆	0	1	72
7	AgBF ₄	0	1	0^c
8	PtCl ₂	0 to rt	12	0^{c}
9	$HNTf_2$ (1 equiv)	0 to rt	12	0^d
10 ^e	Ph ₃ PAuNTf ₂	0	1	94 (85 ^f)
11^e	$Et_3PAuNTf_2$	0	1	93

^{*a*} The reaction concentration was 0.05 M. ^{*b*} Estimated by ¹H NMR using diethyl phthalate as an internal reference. ^{*c*} With no 5 left. ^{*d*} With 94% of 5 left. ^{*e*} Using 4 Å MS (5 × weight of *m*-CPBA). ^{*f*} Isolated yield.

procedure, the intermediate 3-butynylamines were isolated as crude residues and used directly without column purification. As shown in Table 2, this procedure worked delightfully well with a range of secondary amines, and the overall yields of this formal [4 + 2] reaction ranged from 54 to 79%. The regioselectivity of the gold catalysis was studied in entries 1-7. It was apparent that the less-substituted alkyl groups in amine 6 were preferentially involved in the ring formation (entries 1-2) with serviceable selectivities. Electronic factors also affected the selectivity, and cation-stabilizing substituents at the amine a-carbon expectedly facilitated regioselective ring formation, albeit to a moderate extent [e.g., phenyl (entry 4)]. The enhanced selectivity in the case of 1,2,3,4-tetrahydroisoquinonine (entry 5) is notable. Interestingly, when two aryl groups were compared, a MeO group at the para position did not impart detectable selectivity (entry 6). An ester group essentially prohibited the participation of its α -hydrogens (entry 7). This facile formation of piperidin-4-ones is rather diastereoselective. Thus, when 2-methylpiperidine was used, the diastereomer with an axial methyl group (i.e., 7h) was formed with 7:1 selectivity (entry 8); in the case of 4-methylpiperidine, only 7i was observed (entry 9). For L-proline methyl ester hydrochloride (i.e., 6j), 6:1 diastereoselectivity was achieved at -78 °C.7 In addition, this chemistry allowed ready preparation of five- and seven-membered ring-fused piperidin-4-ones (entries 12 and 13), and functional groups such as TBSO (entry 14), ester (entries 7 and 10), and aryl (entries 3-6, 11) were readily tolerated.

The diastereoselectivity of this chemistry was further probed using substrates with substituted 3-butynyl groups. While substitutions at the propargylic and homopropargylic positions were well tolerated (eqs 1 and 2), a high diastereoselectivity was observed with a propargylic *n*-propyl group (eq 2).

Besides the anticipated hydride migration mechanism shown in Scheme 1,⁸ an alternative direct C–H insertion by the gold carbene in **B** could readily explain the reaction outcomes as well. To shed light on the reaction mechanism, we performed the reaction shown in eq 3 without using 4 Å

[†] Current address: Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, 93106.

MS. If the hydride migration mechanism is operating, H₂O from commercial *m*-CPBA would hydrolyze the iminium intermediate of type C to give detectable side products. Indeed, benzaldehyde was observed,

Table 2. Two-step, Formal [4 + 2] Formation of Piperidin-4-ones: Scope Study

	a antesta		T1/T2	- i al db
entry	substrate	product	11/12	yield
1	H Me_() ^N Me 6a	$Me \bigvee_{7}^{N} \int_{7}^{7} a Me^{-N} \int_{7}^{7} a'$	20 h /1 h	70%
2	H N Me 6b	$ \begin{array}{c} & & \\ & & $	24 h /7 h	54% ^{c,d}
3	H Ph _↓ N _. Me 6c	$\begin{array}{ccc} Ph & Ph & O\\ Ph & N & 7c & Me^{-N} & 7c'\\ 2 & \vdots & 1 \end{array}$	30 h /1 h	79%
4	H Ph, N, Me 6d ∀3	$\begin{array}{c} Me \\ Ph \\ N \\ 1 \end{array} \begin{array}{c} O \\ 7d \\ He \\ 73 \\ 3 \end{array} \begin{array}{c} Ph \\ 7d' \\ 7d' \end{array}$	36 h /1 h	67%
5	NH 6e		24 h /1 h	67%
6	MeO H 6f	$\begin{array}{c} p - \text{MeOPh} \\ Bn \\ 1 \\ \end{array} \begin{array}{c} 0 \\ r \\$	24 h /1 h	69%
7	Eto H H Me 6g	EtO N Me	24 h /1 h	66%
8	Me N 6h	$\mathbf{Me}^{\mathbf{H}} = \mathbf{O}^{\mathbf{H}} \mathbf$	24 h /12 h	74% ^{c,d,e}
9	Me 6i	$\stackrel{Me}{\longleftarrow} \stackrel{H}{\bigvee} \stackrel{O}{\longrightarrow} 7i (\mathrm{dr} > 20:1)$	12 h /1 h	68%
10	CĪ N OMe 6j	$O = \underbrace{\bigcup_{N=1}^{H} 7j (dr = 6:1)}_{CO_2 Me}$	5 h /12 h	65% ^f
11	H Ph _↓ N _↓ Ph 6k		36 h /1 h	64%
12	<_N [™] , ^H el	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12 h /1 h	59%
13	○ N _{`H} 6m	√ √ √ √ 7m	8 h /1 h	61%
14	TBSO NH 6n	TBSO N TBS	24 h /1 h	75%

^a The reaction concentration was 1 M for the first step and 0.05 M for the second step. ^b Overall yield for two steps. ^c Cs₂CO₃ as the base and Et₃PAuNTf₂ as the catalyst were used instead. ^d Gold catalysis temperature: -20 °C. ^e DMF was used as the solvent for alkylation. ^f Gold catalysis temperature: -78 °C.

and amino ketone 13 was formed in 29% yield. This result argues against the direct C-H insertion mechanism and in addition suggests that the gold enolate in intermediate C cyclizes at a moderate rate.

$$\stackrel{Ae}{\underbrace{}}_{N_{H}} \xrightarrow{a}_{41\%} \xrightarrow{We}_{Me} \xrightarrow{b}_{Me} \xrightarrow{He}_{Me} \xrightarrow{H}_{Me} \xrightarrow{C}_{43\%} \xrightarrow{Me}_{Me} \xrightarrow{H}_{N} \xrightarrow{Me}_{14} \xrightarrow{Me}_{(+/-) \text{ cermizine C}}$$

Figure 1. Diastereoselective synthesis of (\pm) -cermizine C. Reagents and conditions: (a) (i) (Boc)₂O, THF/H₂O, NaOH (1 N); (ii) RuO₂•xH₂O (20 mol %), NaIO₄ (5 equiv), EtOAc/H₂O; (iii) MeMgBr; (iv) CF₃CO₂H, then NaOH; (v) Pd(OH)₂/C, H₂ (45 psi). (b) (i) 3-Butynyl tosylate, NaI, Cs₂CO₃, CH₃CN, reflux; (ii) m-CPBA (1 equiv), 0 °C, 1 h, then Ph₃PAuNTf₂ (5 mol %), 0 °C, 1 h. (c) (i) (CH₂SH)₂, BF₃·Et₂O; (ii) Raney Ni, MeOH, reflux.

This expedient two-step construction of piperidin-4-ones is a powerful method in total synthesis of alkaloids. Figure 1 outlines a highly diastereoselective synthesis⁹ of (\pm) -cermizine C. Hence, *cis*-2,4-dimethylpiperidine,¹⁰ prepared from 4-methylpiperidine in five steps, was readily converted into quinolizidinone 14 following this two-step sequence with the desired stereochemistry (dr > 50:1) and in a 63% overall yield; subsequent routine deoxygenation afforded the natural product as a racemic mixture.

In summary, we have developed an efficient, formal [4 + 2]synthesis of synthetically valuable piperidin-4-ones in two steps without the purification of tertiary amine intermediates. The reaction is selective toward less-hindered alkyl substituents and shows moderate to excellent diastereoselectivities. Comparing with related Rh-catalyzed C-H insertions,¹¹ this gold catalysis achieves formal insertions into C-H bonds without using hazardous diazo starting materials and moreover is compatible with basic amines, which usually coordinate and poison Rh catalysts.

Acknowledgment. The authors thank the NSF (CAREER Award CHE-0748484), UNR, and Amgen for generous financial support.

Supporting Information Available: Experimental procedures and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

Ν

- (1) For selected reviews on gold catalysis, see: (a) Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766. (b) Arcadi, A. Chem. Rev. 2008, 108, 3266. (c) Li, Z.; Brouwer, C.; He, C. *Chem. Rev.* **2008**, *108*, 3239. (d) Gorin, D. J.; Sherry, B. D.; Toste, F. D. *Chem. Rev.* **2008**, *108*, 3351. (e) Skouta, R.; Li, C.-J. *Tetrahedron* **2008**, *64*, 4917. (f) Jiménez-Núñez, E.; Echavarren, A. M. *Chem.* Rev. 2008, 108, 3326. (g) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (h) Fürstner, A.; Davis, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (i) Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 227
- (2) Morita, H.; Hirasawa, Y.; Shinzato, T.; Kobayashi, J. i. Tetrahedron 2004, 60, 7015
- (3) Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11, 1225.
 (4) For other studies involving gold-catalyzed intramolecular oxidation of alkynes, see: (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160. (b) Li, G.; Zhang, L. Angew. Chem., Int. Ed. 2007, 46, 5156. (c) Yeom, H.-S.; Lee, J.-E.; Shin, S. Angew. Chem., Int. Ed. 2008, 47, 7040.
- (5) For a gold catalysis with a proposed long-range hydride migration, see: (a) Lo, V. K. Y.; Wong, M. K.; Che, C. M. Org. Lett. 2008, 10, 517. For examples of hydrogens α to a heteroatom migrating as hydrides, see: (b) Pastine, S. J.; McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2005, 127, 12180. (c) Matyus, P.; Elias, O.; Tapolcsanyi, P.; Polonka-Balint, A.; Halasz-Dajka, B. Synthesis 2006, 2625.
- (6) Bhunia, S.; Liu, R.-S. J. Am. Chem. Soc. 2008, 130, 16488
- (7) The presence of two epimeric isomers was established by NaOMe-promoted interconversion. The ratio changed from the original 6:1 to 1:1.8
- (8) It has been suggested that a gold carbene is less a carbene and more a gold-substituted cation. See: Seidel, G.; Mynott, R.; Fürstner, A. Angew. Chem., Int. Ed. 2009, 48, 2510.
- (9) Snider, B. B.; Grabowski, J. F. J. Org. Chem. 2007, 72, 1039.
 (10) Dwyer, M. P.; Lamar, J. E.; Meyers, A. I. Tetrahedron Lett. 1999, 40, 8965.
- (11) (a) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. (b) Taber, D. F. In Carbon-Carbon σ-Bond Formation; Pattenden, G., Ed.; Pergamon Press: Oxford, U.K., 1991; Vol. 3, pp 1045-1062. (c) Doyle, M. P. Chem. Rev. 1986, 86, 919.

JA903531G